INDC reporting - Project Compilation of Nuclear Data Experiments for Radiation Characterisation (CONDERC)

Jean-Christophe Sublet – NDSU Ludmila Marian, Shin Okumura, Viktor Zerkin

Content

- Objectives
- Key Elements
- Benchmarks experiments
- Project
- 1. Reference Spectra
- 2. Resonance integrals and thermal values
- 3. FNS decay heat: fusion events
- 4. Fission pulse heat: fission events
- 5. ICSBEP & RR : beyond K_{eff}
- 6. Transport shielding
- 7. Gamma transport: Verification

Objectives

- To transfer into technology the experimental integral radiation information that can be used as part of the Validation and Verification processes of nuclear model and code systems
- To provide various schema, protocol to perform the V&V processes
- The aim is to construct several benchmarks databases based on extensive and thorough V&V activities for example, data evaluation processes, inventory calculations, source-term and reaction rates simulation, but also outreaching to engineering systems.

Objectives

- The aim is to provide all experimental and calculational information in such computational ways that it can easily, seamlessly and rapidly be deployed in support of the many scientific systems that need them:
 - model, inventory, transport, material sciences code systems, etc..

Key Elements

- Identify and compile a set of radiation characterization benchmarks (both computational and experimental) that includes spectral indices, reaction rates, decay heat, resonance integral, particle emissions (source terms), etc.
- Assess and review the data, including quantification of uncertainties, then compile the data into computer format for dissemination
- Perform simulations of each benchmark with a suitable code system and selected nuclear libraries and produce a database/repository of the necessary input files to repeat those simulations for other nuclear data libraries.

Benchmarks experiments

- 1. JAEA time dependent Fusion Neutron Source decay heat experiments (73 materials, 2/3 irradiation campaigns)
- 2. FZK 6764 (steel) isotopic composition measurements
- 3. Li(p,n) (up to 150 MeV) angular neutron yields
- 4. Fission pulse decay heat experiments
- 5. Fission delayed neutron experiments
- 6. Selected criticality experiment with reaction rates (ICSBEP, IRPhEP, REAL-IAEA)
- 7. Experimental MACS from KADoNiS
- Spectrum-averaged cross sections in reference spectra (e.g. ²⁵²Cf, ²³⁵U, ACRR, LR-0, BOR, HFR, etc.)

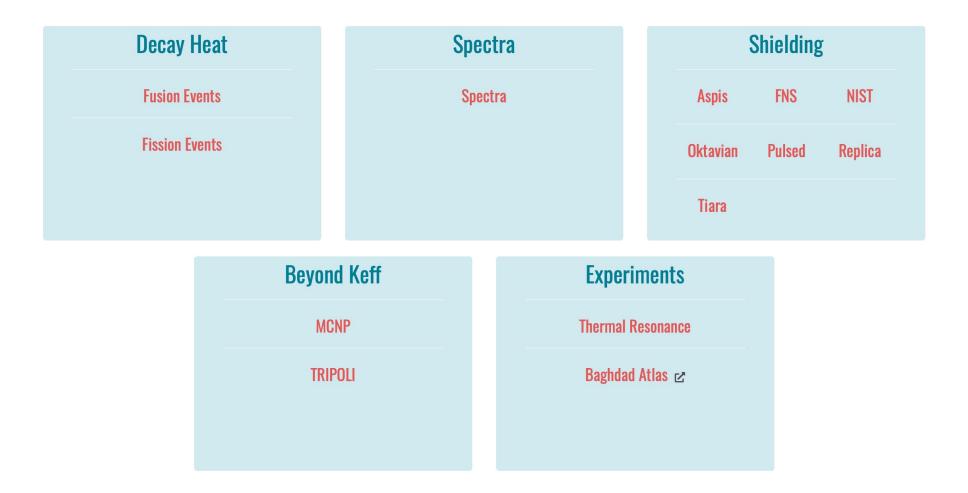
Benchmarks experiments

- 9. Resonance integrals (based on the Atlas, other experiments, compilation)
- 10. Resonance integrals and thermal cross-section based on kayzero database for NAA
- 11. Time dependent gamma spectral measurements from PNNL (fission) and UK (fusion)
- 12. (gamma, n) experimental data (Laser-Compton scattering from TUNL and New Subaru)
- 13. Integro-differential benchmark (from EXFOR or otherwise)
- 14. Shielding and fusion leakage benchmarks from SINBAD and other sources (including models)
- 15. Reference spectra for computational analysis

Project

 The project has been managed and constructed through one Technical Contract (ending in 2021) a few experts small consultant agreements and generous contributions

The WEB site, portal is been designed internally



CoNDERC

Compilation of Nuclear Data Experiments for Radiation Characterisation (CoNDERC)

The purpose of the CoNDERC project is to transfer into technology the experimental integral radiation information that can be used as part of the Validation and Verification processes of nuclear model and code systems, and to provide various schema to perform the V&V. Under the auspices of the IAEA Nuclear Data Section, individuals and institutions are assembling several of databases and code infrastructures based on their own V&V activities mainly associated with inventory, activation-transmutation, source term and radiation shielding R&D.

CoNDERC

Home Documentation Contributors

Contributing individuals and institutions

- Michael Fleming
- Ian Gauld
- Mark R. Gilbert 🚟
- Aaron Hurst
- Cedric Jouanne

- Albert C. Kahler 🌉
- Bor Kos 🚘
- Ludmila Marian
- Fujio Maekawa •

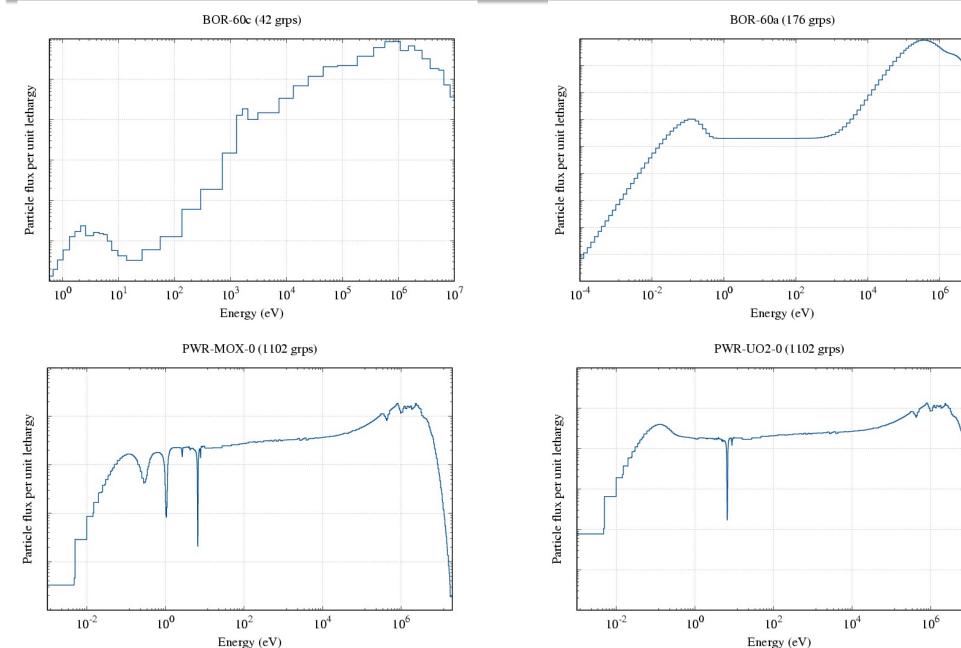
- Steven C. van der Marck
- Shin Okumura 💿
- Jean-Christophe Sublet 🥥
- Tadashi Yoshida ●

Ljubljana, Slovenia

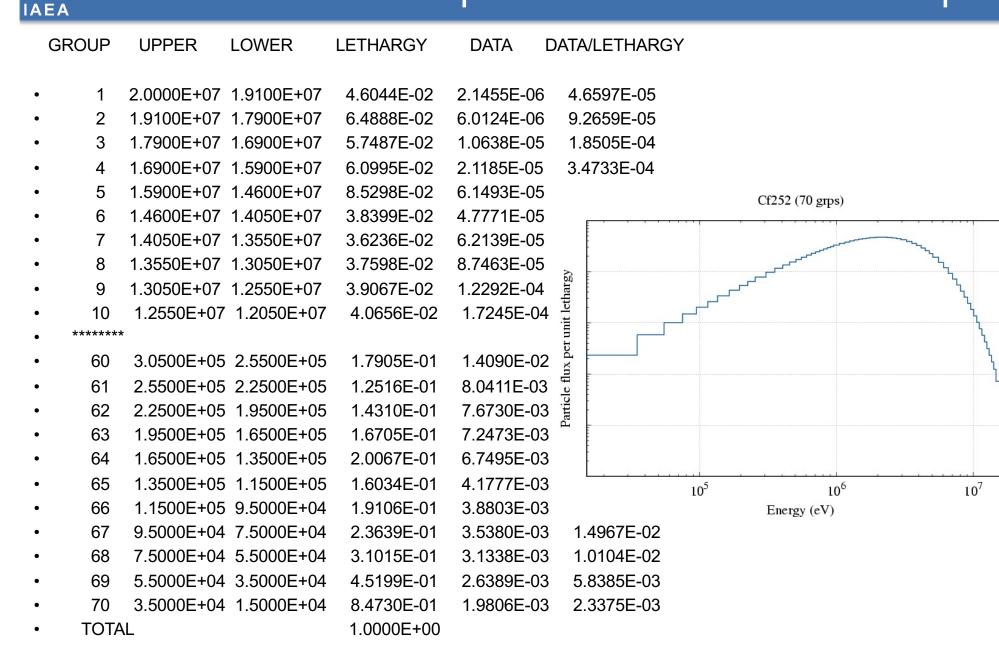
- The majority of neutron-application spectra stem from lightwater assemblies, mock-ups, piles or reactors where the integral responses are strongly, if not solely, influenced by the energy ranges of the fission spectra, resonance range and thermal Maxwellian.
- Fusion spectra that have been obtained from magnetic confinement (MCF) or inertial confinement fusion (ICF) present typical D-D 2.5 MeV, or D-T 14 MeV peaks sometimes accompanied by a higher-energy tail, but also showing rather different slowing-down profiles.
- Accelerator-driven beam spectra are important in their role in nuclear data acquisition and materials research, but also for medical therapeutic and diagnostic applications.

- 85 incident particle spectra are provided, mostly including neutron incident spectra but with some charged particle spectra.
- Note that these are provided in the original energy group structures as generated by the code(s) that calculated them. These are often not the same energy group structures as those provided for the nuclear data libraries and may require a flux conversion.
- Note that while the group conversion can easily be performed, this cannot add structure when moving from a coarse group structure to a more refined multi-group.

 From all over the World, all types, style of piles, research reactors, NPPs, beams, etc..


#	Name	Group	Particle	arb_flux.txt	Figure.png	Description SNL MCNP E8					
1	ACRR-FF-CC-32Cl	640	n	ACRR-FF-CC-32CI	-CC-32CI ACRR-FF-CC-32CI						
2	ACRR-LB44	640	n	ACRR-LB44	ACRR-LB44	SNL MCNP E8					
3	ACRR-PLG	640	n	ACRR-PLG	ACRR-PLG	SNL MCNP E8					
4	FREC-II-FF	640	n	FREC-II-FF	-II-FF FREC-II-FF S						
5	ACRR-CdPoly	640	n	ACRR-CdPoly	ACRR-CdPoly	SNL MCNP E8					
6	SPR-III-CC	640	n	SPR-III-CC	SPR-III-CC	SNL MCNP E8					
7	FBR-6in-leakage	640	n	FBR-6in-leakage	FBR-6in-leakage	SNL MCNP E8					
8	LR-0-Void	640	n	LR-0-Void	LR-0-Void	Rez MCNP					
9	LR-0-NaF	640	n	LR-0-NaF	LR-0-NaF	Rez MCNP					
10	LR-0-As2O3	640	n	LR-0-As2O3	LR-0-As2O3	Rez MCNP					
11	LR-0-Y2O3	640	n	LR-0-Y2O3	LR-0-Y2O3	Rez MCNP					
12	LR-0-ZrO2	640	n	LR-0-ZrO2	LR-0-ZrO2	Rez MCNP					
13	LR-0-MnO2	640	n	LR-0-MnO2	LR-0-MnO2	Rez MCNP					
14	LR-0-NaI	640	n	LR-0-NaI	LR-0-NaI	Rez MCNP					
15	MURR-G1	112	n	MURR-G1	MURR-G1	EXFOR xxxxx					
16	TRIGA	79	n	TRIGA	TRIGA	EXFOR 31733					
17	HBR-2-RPV	47	n	HBR-2-RPV	HBR-2-RPV	ORNL/TM-13204					
18	LANL-OWR	69	n	LANL-OWR	LANL-OWR	LANL Omega West					
19	SCK-BR2	621	n	SCK-BR2	SCK-BR2	SCK-CEN BR2 MCNP					
20	EBR-2	29	n	EBR-2	EBR-2	ANL West					
21	BOR-60c	42	n	BOR-60c	BOR-60c	Rosatom					
22	BOR-60b	69	n	BOR-60b	BOR-60b	Rosatom					
23	BOR-60a	176	n	BOR-60a	BOR-60a	Rosatom					
24	BWR-RPV	198	n	BWR-RPV	BWR-RPV	EPRI NP-152					
25	PWR-RPV	198	n	PWR-RPV	PWR-RPV	EPRI NP-152					
26	Cf252	70	n	Cf252	Cf252	PTB					
27	Bigten	407	n	Bigten	Bigten	CEA TRIPOLI					
28	HFIR-lowres	100	n	HFIR-lowres	HFIR-lowres	ORNL					
29	HFIR-highres	238	n	HFIR-highres	HFIR-highres	ORNL					
30	HFIR-VXF3-AD	238	n	HFIR-VXF3-AD	HFIR-VXF3-AD	ORNL MCNP					
31	HFR-high	616	n	HFR-high	HFR-high	NRG MCNP					
32	HFR-low	616	n	HFR-low	HFR-low	NRG MCNP					
33	HFR-C3	171	n	HFR-C3	HFR-C3	NRG MCNP					
34	HFR-C7	171	n	HFR-C7	HFR-C7	NRG MCNP					
35	IFMIF-DLi	211	n	IFMIF-DLi	IFMIF-DLi	KFK					
36	Tokyo-90KeV	94	n	Tokyo-90KeV	Tokyo-90KeV	EXFOR 22850					
37	Tokyo-190KeV	150	n	Tokyo-190KeV	Tokyo-190KeV	EXFOR 22850					
38	Tokyo-330KeV	145	n	Tokyo-330KeV	Tokyo-330KeV	EXFOR 22850					
39	Tokyo-540KeV	275	n	Tokyo-540KeV	Tokyo-540KeV	EXFOR 22850					
40	Paluel	172	n	Paluel	Paluel Framatome APO						

 NNP also: BWR and PWR in cycle at 600K not room temperature • ESS, CERN, Maxwellian, Am-Be, Yayoi, Phenix, etc.



-								
41	PWR-MOX-0	1102	n	PWR-MOX-0	PWR-MOX-0	NDS-139(2017)1-76		
42	PWR-MOX-15	1102	n	PWR-MOX-15	PWR-MOX-15	NDS-139(2017)1-76		
43	PWR-MOX-40	1102	n	PWR-MOX-40	PWR-MOX-40	NDS-139(2017)1-76		
44	PWR-UO2-0	1102	n	PWR-UO2-0	PWR-UO2-0	NDS-139(2017)1-76		
45	PWR-UO2-15	1102	n	PWR-UO2-15	PWR-U02-15	NDS-139(2017)1-76		
46	PWR-UO2-40	1102	n	PWR-UO2-40	PWR-UO2-40	NDS-139(2017)1-76		
47	PWR-UO2-Gd-0	1102	n	PWR-UO2-Gd-0	d-0 PWR-UO2-Gd-0 N			
48	PWR-UO2-Gd-15	1102	n	PWR-UO2-Gd-15	PWR-UO2-Gd-15	NDS-139(2017)1-76		
49	PWR-UO2-Gd-40	1102	n	PWR-UO2-Gd-40	PWR-UO2-Gd-40	NDS-139(2017)1-76		
50	BWR-MOX-Gd-0	1102	n	BWR-MOX-Gd-0	BWR-MOX-Gd-0	NDS-139(2017)1-76		
51	BWR-MOX-Gd-15	1102	n	BWR-MOX-Gd-15	BWR-MOX-Gd-15	NDS-139(2017)1-76		
52	BWR-MOX-Gd-40	1102	n	BWR-MOX-Gd-40	BWR-MOX-Gd-40	NDS-139(2017)1-76		
53	BWR-UO2-Gd-0	1102	n	BWR-UO2-Gd-0	BWR-UO2-Gd-0	NDS-139(2017)1-76		
54	BWR-UO2-Gd-15	1102	n	BWR-UO2-Gd-15	BWR-UO2-Gd-15	NDS-139(2017)1-76		
55	BWR-UO2-Gd-40	1102	n	BWR-UO2-Gd-40	BWR-UO2-Gd-40	NDS-139(2017)1-76		
56	Phenix	172	n	Phenix	Phenix	CEA ERANOS		
57	Superphenix	172	n	Superphenix	Superphenix	CEA ERANOS		
58	Yayoi	107	n	Yayoi	Yayoi	EXFOR 23075		
59	Frascati-NG	175	n	Frascati-NG	Frascati-NG	ENEA		
60	TUD-NG	175	n	TUD-NG	TUD-NG	TUD		
61	JAEA-FNS-pos3	175	n	JAEA-FNS-pos3	JAEA-FNS-pos3	JAEA MCNP		
62	JAEA-FNS-pos1	175	n	JAEA-FNS-pos1	JAEA-FNS-pos1	JAEA MCNP		
63	JAEA-FNS-pos2	175	n	JAEA-FNS-pos2	JAEA-FNS-pos2	JAEA MCNP		
64	JAEA-FNS-pos7	175	n	JAEA-FNS-pos7	JAEA-FNS-pos7	JAEA MCNP		
65	JET-FW	100	n	JET-FW	JET-FW	UKAEA McBend		
66	ITER-DD	175	n	ITER-DD	ITER-DD	UKAEA		
67	ITER-DT	175	n	ITER-DT	ITER-DT			
68	NIF-ignition	150	n	NIF-ignition	NIF-ignition	MIT		
69	LMJ-g	161	γ	LMJ-g	LMJ-g	CEA		
70	DEMO-HCPB-FW	616	n	DEMO-HCPB-FW	DEMO-HCPB-FW	UKAEA		
71	DEMO-HCPB-VV	616	n	DEMO-HCPB-VV	DEMO-HCPB-VV	UKAEA		
72	DEMO-HCPB-BP	616	n	DEMO-HCPB-BP	DEMO-HCPB-BP	UKAEA		
73	WCLL-FW	616	n	WCLL-FW	WCLL-FW	UKAEA		
74	WCLL-VV	616	n	WCLL-VV	WCLL-VV	UKAEA		
75	WCCB-FW	616	n	WCCB-FW	WCCB-FW	UKAEA		
76	WCCB-VV	616	n	WCCB-VV	WCCB-VV	UKAEA		
77	HCPB-FW	616	n	HCPB-FW	HCPB-FW	UKAEA		
78	HCPB-VV	616	n	HCPB-VV	HCPB-VV	UKAEA		
79	HCLL-FW	616	n	HCLL-FW	HCLL-FW	UKAEA		
80	HCLL-VV	616	n	HCLL-VV	HCLL-VV	UKAEA		
81	Maxwellian	709	n	1keV 10keV 30keV 5keV 80keV	Maxwellian	UKAEA		
82	Maxwellian-25keV	30	n	Maxwellian-25keV	Maxwellian-25keV	EXFOR 01963		
83	Am-Be	46	n	Am-Be	Am-Be	EXFOR 31724		
84	ESS-2	117	n	ESS-2	ESS-2	ESS		
85	CERN-H4IRRAD	288	n	CERN-H4IRRAD	CERN-H4IRRAD	CERN		

Reference Spectra: numerical data and plots

Time evolution: flux, ssf and rr

2. Resonance integrals and thermal values

- THERMAL RESONANCE RANGES INFORMATION TABLE – May 2021
 - Recent publications
 - Data table compiled from EXFOR (May 2021)
 - S.F. Mughabghab in Atlas of Resonances (sixth Edition)
 - N.E. Holden in Handbook of Chemistry and Physics 99Th Edition
 - I. Dillmann, R. Plag, F. Kappeler and T. Rauscher in KADoNiS v1.0 +
 - J. Kopecky in UKAEA-R(15)30

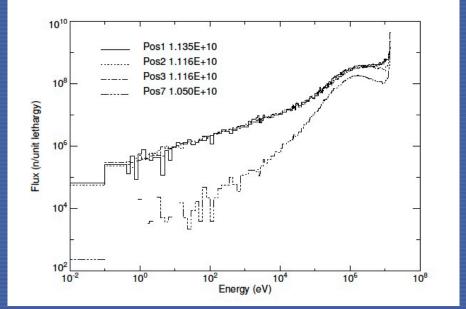
Resonance integrals and thermal values

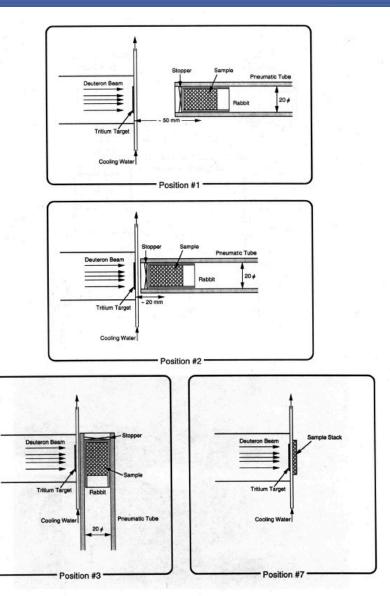
Headers is 10 lines; 502 entries Format : ascii columns

- no uncertainty means upper value
- D/D0/D1 level spacing (mean, s-, p-wave)
- I resonance integral, c=capture radiative a=alpha, p=proton, f=fission, abs=absorption
- Macs30 averaged over a Maxwellian spectrum peaking at 30 KeV

296 columns width – Audi Wapstra mass table style

THERMAL - RESONANCE RANGES INFORMATION TABLE DATE May 2019

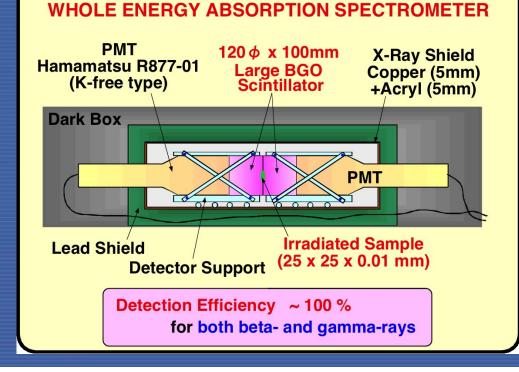

Data table compiled from EXFOR (May 2019); S.F. Mughabghab in Atlas of Resonances (sixth Edition); N.E. Holden in Handbook of Chemistry and Physics 99Th Edition; I. Dillmann, R. Plag, F. Kappeler and T. Rauscher in KADoNiS v0.3; J. Kopecky in UKAEA-R(15)30. Headers is 10 lines; 502 entries Format : a socio columns


7 Remar 8 Unit:	ks, no un	columns certainty me	ans upper val b	ue; D/DO/I	01 level spa	cing (mean,	s-,p-wave)	: I resonanc	e integral,	c=capture	radiative;	a=aplha, j	p=proton;	f=fissior	n, abs=ab	sorption	n; Macs30	0 average	d over a m	axwellian	spectrum	peaking at	30 KeV			L.			
9 +	10+ Z	. 20 + 3	30+40	+	+ 60	. + 70	+80 (n, el)	+90+.	. 100 + 1	.10+1	20+13	0+14	40+:	150+	160+		. + 180.	+19	0+20	10 + 21	.0 +	220+2	30+2	240+.	.250+	260+	⊧270.	+280 Macs30	+290
10 EL A 11 H 1 12 H 2	1	Iso Spin O O	Maxw. (n, g) 5.08e-4	1.5e-5	(n, g) 0.3326	0.0007	20.491 3.390	0.014 0.012	(n, a)		(n, p)		(n, r)		H001 H002	2.0	. 006	0/00/01		10		18	тр		.1	Iabs		2.54e-1 2.0 3.00e-3 2.0	Sym Oe-2 HOO: Oe-4 HOO:
12 H 2 13 H 3 14 He 3	1	0 1/2+ 0 1/2+	6e-6 5.5e-5	3e-6			1.70 3.10	0.03			5333	8			H003 He003	3.0	0.2						2400	7				7.60e-3 6.0	H003
15 He 4 16 Li 6	23	0 0+ 0 1+	0.0393	0.0007			0.79 0.75	0.02	940	4					He004 Li006	3.3 3.8	0.1 0.2			1.77e-2	1.4e-3					425	4		He004 Li006
17 Li 7 18 Be 7	3 4	0 3/2- 0 3/2-	0.0442	0.0005			0.97	0.04	0.1		38820	809					0.03			2e-2	2e-3		17500	500				4.20e-2 3.0	
19 Be 9 20 Be 10	4	0 3/2-	8.27e-3 1.0e-3	1.3e-4			6.151	0.005							Be009 Be010	4.37	0.4			3.7e-3	2e-4							1.02e-2 1.6	0e-3 Be009 Be010
21 B 10 22 B 11 23 C 12	5	0 3/2-	0.394 9.0e-3	0.015 0.2e-3			2.23 4.83	0.06 0.04	3837	9					B010 B011		0.4 0.2			4.3e-3	2e-4	1722 5				1722	5		B010 B013
24 C 13	6 6	0 0+ 0 1/2-	1.50e-3	2e-5	3.87e-3	0.3e-4	4.746 4.19	0.002 0.12							C012 C013	5.1	0.2 0.15			1.83e-3 1.1e-3	5e-5 2e-4		37e-3	3e-3				1.54e-2 1.0 2.10e-2 4.0	0e-3 CO13
25 C 14 26 N 14	6 7	0 0+ 0 1+	1e-6 80.1e-3	0.6e-3			10.02	0.12			1.86	0.03			CO14 NO14	5.5	0.3			3.6e-2	1e-3		0.87	3e-2				8.48e-3 5.7 4.10e-2 6.0	0e-4 CO14 0e-2 NO14
27 N 15 28 0 16	7	0 1/2- 0 0+	2.4e-5 1.90e-4	8e-6 1.9e-5			4.59 3.761	0.05 0.006							N015 0016	4.94	0.1 0.1	450	63	1.1e-4 2.7e-4	3e-5							5.80e-3 6.0 3.80e-2 4.0	0e-3 0016
29 0 17 30 0 18	8 8	0 5/2+ 0 0+	5.38e-4 1.6e-4	6.5e-5 1e-5			3.61	0.06	0.235	0.01					0017 0018	4.80	$0.2 \\ 0.11$			4.1e-4 8.1e-4	6e-5 4e-5					0.11	0.01	8.90e-3 8.0	
31 F 19 32 Ne 20 33 Ne 21 34 Ne 22 35 Na 22	9 10	0 1/2+ 0 0+	9.51e-3 37e-3	9e-5 4e-3			3.641 2.47	0.01							F019 Ne020	5.0	0.2 0.2	60 250	10 0.04	1.8e-2 1.65e-2	3e-3 3e-3							3.20e+0 1.0 1.19e-1 1.1	0e-2 Ne020
33 Ne 21 34 Ne 22	10 10	0 3/2+	0.666 5.27e-2	0.11 7.0e-3			5.22 1.705	0.30 0.009	1.8e-4	7e-5					NeO21 NeO22	5.10 5.15	0.3 0.1			0.296 6e-4	0.05							1.50e+0 9.0 5.80e-2 4.0	0e-3 Ne022
35 Na 22 36 Na 23	11 11	0 3+ 0 3/2+	0.501	0.030	462 0.525	0.005	3.038	0.007	262	50	27840	2400			Na022 Na023	4.90	0.2	122	30	0.312	0.01	2e+5 5e+	4 1.37e5	1.2e4				2.10e+0 2.0	Na023 Oe-1 Na023
37 Mg 24 38 Mg 25	12 12	0 0+ 0 5/2+	0.199	0.003	0.0538	0.0013	3.74 1.73	0.04 0.13							Mg024 Mg025	5.4 5.07	0.1	158 24.9	30 24 4.4	0.030 0.104	0.004							3.30e+0 4.0 6.40e+0 4.0	0e-1 Mg025
36 Na 23 37 Mg 24 38 Mg 25 39 Mg 26 40 Mg 27 41 Al 26	12 12	0 0+	0.07	0.02	0.0374	0.0004	2.83	0.17	0.005	0.014	1 07	0.01			Mg026 Mg027	5.15	0.15			0.020	0.001							1.26e-1 9.0	Ma02
41 AL 26 42 AL 27	13 13	0 5+ 0 5/2+	0 122	0.004	0.231	0.003	1.4134	0.001 0.006	0.335	0.014	1.97	0.01			A1026 A1027	5.09	0.1	53 332	7 35	0.136 0.080	0.01 0.015							3.70e+0 0.0 3.74e+0 3.0	0e-1 Al02'
42 Al 27 43 Si 28 44 Si 29 45 Si 30	14 14	0 0+ 0 1/2+	0.177 0.119 0.107	0.004 0.003 0.002			1.992 2.66 2.49	0.13							Si028 Si029 Si030	4.8 4.34	0.2 0.2 0.2	52.4 70.8	35 5.4 7.9	0.080 0.081 0.098	0.015							1.42e+0 1.3 6.58e+0 6.6	0e-1 Si029
45 S1 30 46 Si 31	14 14	0 0+ 0 3/2	0.073 0.50	0.002			2.49	0.04							Si031	4.21	0.2	70.8	7.9	0.098	0.007							1.82e+0 3.3	Si03:
$\begin{array}{ccccc} 46 \ {\rm si} & 31 \\ 47 \ {\rm si} & 32 \\ 48 \ {\rm p} & 31 \\ 49 \ {\rm s} & 32 \\ 50 \ {\rm s} & 33 \\ 51 \ {\rm s} & 34 \\ 52 \ {\rm s} & 36 \\ 53 \ {\rm cl} & 35 \\ 54 \ {\rm cl} & 36 \\ 55 \ {\rm cl} & 37 \end{array}$	14 14 15 16	0 1/2+ 0 0+	0.518	0.014	0.166	0.003	3.134 0.9432	0.01 0.0021	7e-3	4e-3					Si032 P031 S032	4.4 3.93	0.2	54.9 179	10.4 29	0.079 246	0.002 10							1.74e+0 9.0 4.10e+0 2.0	Si03 0e-2 P03 0e-1 S03
50 s 33 51 s 34	16 16	0 3/2+ 0 0+	0.454 2.56e-1	0.025 9e-3			2.73	0.25	115	10	2	1			\$032 \$033 \$034	3.85	0.1	9.35 111	0.89 40	221 105	15							7.40e+0 1.5 2.26e-1 1.0	0e+0 \$033
52 S 36 53 C1 35	16 17	0 3/2+	0.236	0.006			20.6	0.3	0.8e-4	0.4e-4	0.489	0.014			\$034 \$036 \$1035	3.9	0.3	22.3	2.5	170 17.9	4 0.3		0.554	0 000				1.71e-1 1.4	0e-2 503 0e-2 503 0e-1 Cl03
54 C1 36 55 C1 37	17 17 17	0 2+ 0 3/2+	10 0.433	0.4			1.15	0.05	5.9e-4	7e-5	4.62e-2	4e-4			c1035 c1036	3.48	0.1	6.6	0.7	3.8	0.04		0.42	0.023				1.20e+1 1.0 2.12e+0 7.0	0e+0 C1036
56 Ar 36 57 Ar 37	18 18	0 0+ 0 3/2+	5.2	0.5			73.7	0.4	5.5e-3 1070	1e-4 80	37	4			Ar036 Ar037	2.84	0.1	0.0	0.7	0.5	0.04							9.00e+0 1.5	
56 Ar 36 57 Ar 37 58 Ar 38 59 Ar 39	18 18	0 0+	0.8 600	0.2 300			1.5	1.5	0.29	00	57				Ar038 Ar039													3.00e+0 3.0 8.00e+0 2.0	0e-1 Ar038 0e+0 Ar039
60 Ar 40 61 Ar 41	18 18	0 0+	0.660 0.5	0.010 0.1			0.413	0.004	0.10						Ar040 Ar041	2.43	0.05	51.9	2.3	0.41	0.03							2.55e+0 1.0	0e-1 Ar040 Ar041
62 K 39 63 K 40	19 19	0 3/2+	2.1 38	0.2			1.99	0.17	4.3e-3 0.39	5e-4 0.03	4.4	0.3			K039 K040	2.65	0.3	8.0 0.84	0.8 0.09	1.1 13	$\begin{array}{c} 0.1 \\ 4 \end{array}$		2.0	0.2				1.18e+1 4.0 3.10e+1 7.0	0e-1 K039
CA 77 A1	10	0 0/0-	1 40	0.00	400		0.00	0.00							2041			7 4	0.7	0 00	_				100 100	0045	470	0 00-1 7 0	0-1 204
490 Cm 243 491 Cm 244 492 Cm 245	96 96 96	0 5/2+ 0 0+ 0 7/2+			139 15.3	10 1.2	8.39	1.86	794	23			655 1.04	20 0.2 37	Cm243 Cm244	0.7		1.11e-3 12.1e-3	0.9e-3	184 655	20 30			E	492 100 .2 0.2 72 40	2345 605 897	470		Cm243 Cm244 Cm245
493 Cm 246	96	0 0+			369 1.22	17 0.16	11.1	0.2	2387	41			2018	0.05	Cm245 Cm246	9.7 9.3	0.3 0.2	27e-3	0.5e-4 4e-3	102 121	8 7			1	72 40 .0.2 0.4	260	180 75		Cm246
495 Cm 248	96 96	0 9/2-			57 2.63	10 0.26	7.65	0.40					83.4 0.37	4.4 0.05	Cm247 Cm248	9.65	0.3	1.0e-3 27.9e-3	1.5e-4 2.4e-3	530 270	30 15			ġ	0.2 0.4 60 50 3.2 0.8				Cm24 Cm248
496 Cm 249 497 Bk 249	96 97	0 7/2+	1.6	0.8	746	40							2.5		Cm249 Bk249			1.22e-3	0.9e-4	1114	100			3	.9 1.2	1240	75		Cm249 Bk249
498 BK 250 499 Cf 249	97 98	0 2 0 9/2-	350 497	21 200									960 1642	150 33	Bk250 Cf249			0.76e-3	0.3e-4	765	35			2	380 85	5005			Bk250 Cf249 Cf250
500 Cf 250 501 Cf 251	98 98 98	0 0+ 0 1/2+	2034 2850	150					7745	290			112 4895	99 250	Cf250 Cf251			12.9e-3 8.9e-3		11900 1600	500 30			1	61 39 48 100	5300 900	75 75 75		Cf250 Cf251
502 Cf 252 503 Cf 253	98	0 0+	20.3 17.6	1.5									32 1300	4 240	Cf252 Cf253			24e-3	3e-3	43.5 13	3 3			1	.10 30 000 400	42	15		Cf25 Cf25 Cf25 Cf25 Cf25 Es25
504 Cf 254 505 Es 253	98 99	0	4.5 184	1.5 15					4.999				2		Cf254 Es253					3864	200				~ ~	3600	75		Cf254 Es253
506 Es 254 507 Es 254	99 99	0 7.0	28.3	2.5					1777	110			1749 1826	110 80	Es254 Es254m					18.2 1000	1.5			1	.010 80	1200			Es254 Es254
497 Bk 249 498 Bk 250 499 Cf 249 500 Cf 250 501 Cf 251 502 Cf 252 503 Cf 253 504 Cf 254 505 Es 253 506 Es 254 507 Es 254 508 Es 255 509 Fm 255 511 Fm 256 512 Fm 257	99 100	0	55 76	10					2205	120			2260	170	Es255 Fm254														Es254 Es254 Es254 Es255 Fm254 Fm255
510 Fm 255 511 Fm 256	100	0	26 45	3					3386	170			3360 2950	170 160	Fm255 Fm256											5000			Fm255 Fm256 Fm257
512 Fm 257	100	0		_		_	_			_		_	2930	100	Fm257	_		_	_		_		_	_		5000	_		r m25

456

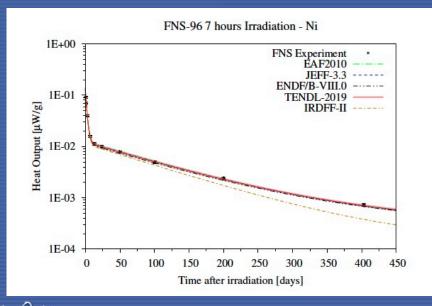
3. FNS decay heat: fusion events

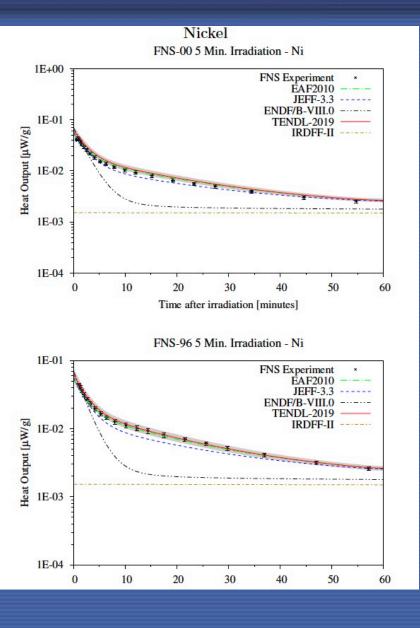
14 MeV neutrons are generated by a 2 mA deuteron beam impinging on a stationary tritium-bearing titanium target.



FNS decay heat: fusion events

- 83 samples, two campaigns
- 5 min and 7 hrs irradiations
- Seconds to a year coolings measurements


Z Material Form Z Material Form 9 Fluorine*§ CF₂ 46 Palladium§ Metallic Foil 11 Sodium*§ 47 Silver[§] Metallic Foil Na₂CO₃ 12 Magnesium*§ 48 Cadmium[§] Metallic Foil MgO 13 Aluminium*§ 49 Indium*§ Metallic Foil Metallic Foil 14 Silicon* Metallic Powder 50 Tin SnO₂ 51 Antimony§ 15 Phosphorus*§ P_3N_5 Metallic Powder 16 Sulphur[§] Powder 52 Tellurium§ TeO₂ 17 Chlorine[§] C2H2Cl2 53 Iodine*§ IC₆H₄OH 55 Caesium§ 19 Potassium§ K₂CO₃ Cs2O3 20 Calcium CaO 56 Barium BaCO₃ 21 Scandium[§] ScoO3 57 Lanthanum*§ La₂O₃ Titanium*§ Cerium§ 22 Metallic Foil CeO₂ 58 23 Vanadium*§ Metallic Foil 59 Praseodymium*§ PreO11 24 Metallic Powder 60 Neodymium[§] Chromium Nd₂O₃ 25 Manganese*§ Metallic Powder 62 Samarium[§] Sm2O3 Iron*§ 26 Metallic Foil 63 Europium[§] Eu₂O₃ Alloy SS304*§ Metallic Foil 64 Gadolinium§ Gd₂O₃ SS316*§ Metallic Foil 65 Terbium[§] Allov Tb4O7 Cobalt*§ 66 Dysprosium§ 27 Metallic Foil Dy₂O₃ Inconel-600*§ Metallic Foil 67 Holmium§ Alloy Ho2O3 28 Nickel*§ Metallic Foil 68 Erbium[§] Er2O3 Nickel-chrome*§ Metallic Foil 69 Thulium*§ Tm₂O₃ Alloy Copper*§ 29 Metallic Foil 70 Ytterbium§ Yb₂O₃ Zinc§ 30 Metallic Foil 71 Lutetium§ Lu₂O₃ 72 Hafnium§ 31 Gallium§ Ga₂O₃ Metallic Powder 32 Germanium[§] GeO₂ 73 Tantalum§ Metallic Foil 33 Arsenic§ As2O3 74 Tungsten* Metallic Foil Selenium§ 34 Metallic Powder 75 Rhenium Metallic Powder Bromine[§] 76 Osmium§ 35 BrC₆H₄COOH Metallic Powder 37 Rubidium§ 77 Iridium§ Metallic Powder Rb₂CO₃ 78 Platinum[§] 38 Strontium SrCO₃ Metallic Foil Yttrium*§ 79 Gold*§ 39 Y2O3 Metallic Foil Zirconium* 80 Mercury*§ 40 Metallic Foil HgO Niobium*§ 81 Thallium§ 41 Metallic Foil Tl₂O 82 Lead* 42 Molvbdenum Metallic Foil Metallic Foil 44 Ruthenium§ Metallic Powder 83 Bismuth Metallic Powder 45 Rhodium*§ Metallic Powder

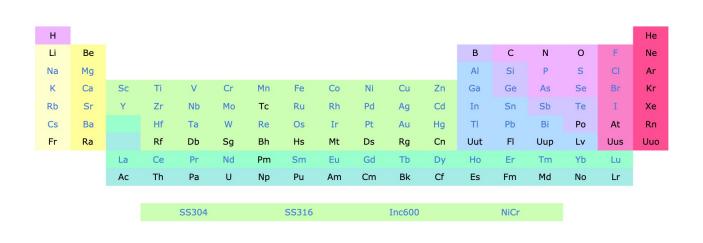

FNS decay heat: fusion events

- Nickel
- Two campaigns

ΕA

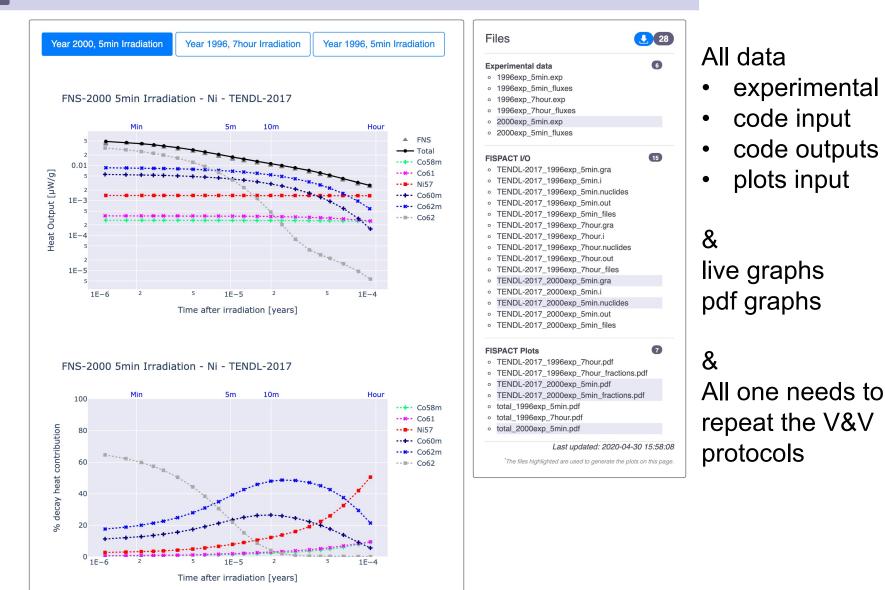
- Irradiations 5 min & 7 Hrs
- 1 hours, 450 days coolings


From 2009 to 2020 in 5 majors steps

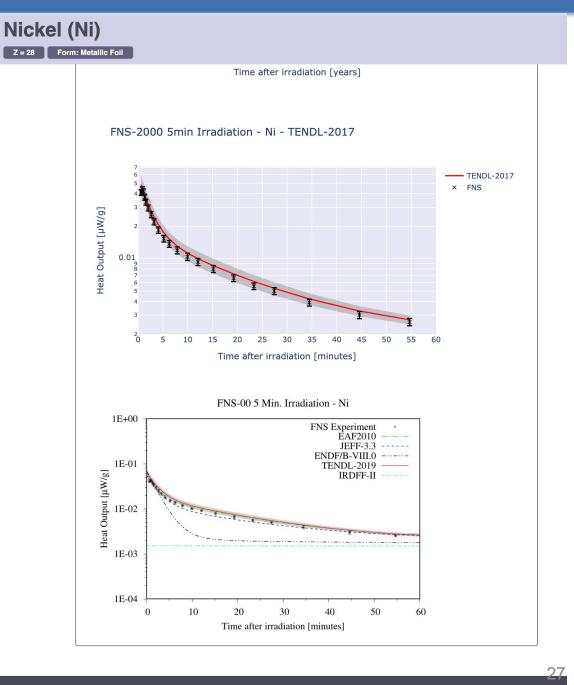

Dataset of FNS decay-heat benchmark

The dataset contains all of the necessary input data and information from which to perform a validation of a nuclear data library with an inventory code against the JAEA-generated decay-heat benchmark from the FNS (fusion-neutron-source) facility. As well as the experimental data for each material, the data set also contains example simulation input files for the FISPACT-II inventory code, which includes information about the material specification, irradiation schedule, neutron spectrum and experimental measurement times. These simulation files can be sued directly with FISPACT-II or can be modified for use with a user's own personal choice of simulation tool. More details and understanding of the benchmark can be found in:

- M.R. Gilbert and J.-Ch. Sublet 2019 "Experimental decay-heat simulation-benchmark for 14 MeV neutrons & complex inventory analysis with FISPACT-II" Nuclear Fusion 59 086045 (resource)
- M.R. Gilbert and J.-Ch. Sublet 2018 "Fusion decay heat validation, FISPACT-II & TENDL-2017, EAF2010, ENDF/B-VIII.0, JEFF-3.3, and IRDFF-1.05 nuclear data libraries" CCFE-R(18)002, UKAEA (resource)



Nickel (Ni)


Z = 28 Form: Metallic Foil

- Experimental uncertainty
- Calculational uncertainty

 Many libraries results and TENDL uncertainty

One final portal

- <u>https://www-nds.iaea.org/Conderc/</u>
- 24 hours a day every day of the year
- Live plots, mouse numerics
- Static download, also github
- Open access

4. Fission pulse heat: fission events

- The importance, treatment of the fission processes differs depending on the applications, but the physic principles underlying them do not, should not
 - fission cross-sections, energy dependence, fission chances, ternary fission
 - prompt, delayed neutron multiplicities
 - prompt, delayed emitted neutron spectra
 - fission products yields metrics for typical reactor applications @ thermal @fast
 - fragment, independent and cumulative fragment yields
 - prompt, delayed gamma radiations
- For reactor physics fission is a must (to bank 200 MeV per event) but it faces stiff competition (fortunately) from another usually open channel in the same energy range: radiative capture
- In the NPP's fuel MOx, UOx, fission is on ²³⁵U, while capture is on ²³⁸U

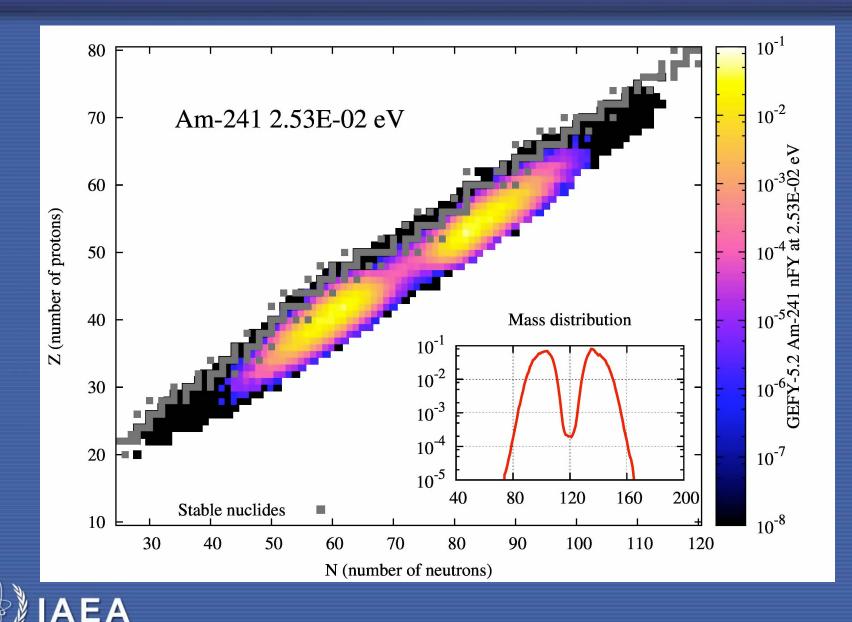
Fission pulse heat: fission events

The importance, treatment of the fission processes differs depending on the applications, what is missing:

- isotropic, really all events !!
- fission fragments angular/energy distributions
- P(nu) dependence in energy and fragments mass
- time dependent energy release rates
- multi-chance fission (n,n'f), (n,2n'f),....
- fission on non-actinides, the lesser fissile
- correlations

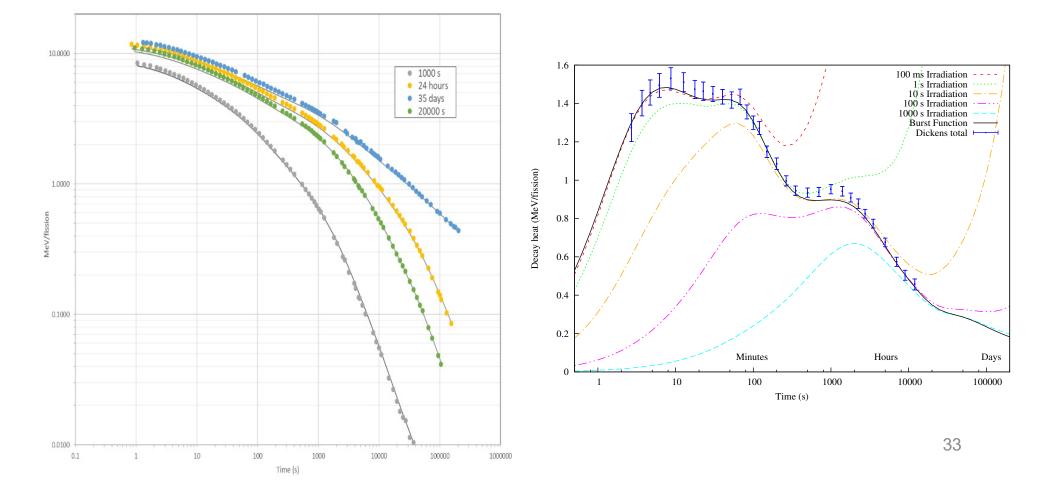
For reactor physics fission, all the above are of little interest, what is in fact important are

- the energy release(s) and fission neutron maps during operation and shortly thereafter (accidental scenarios also)
- the fuel burnup rate, the poisonous fission fragments that capture the neutron that should induce another fission



Fission pulse heat: fission events

- Measurements of fission product energy release rates (decay heat power) following fast and thermal neutron irradiation of ²³³U, ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu, ²³⁷Np, and ²³²Th have been reported for decay times up to 48 hours
- Compilation of all the World experiments has been thoroughly scouted, assembled with proper references

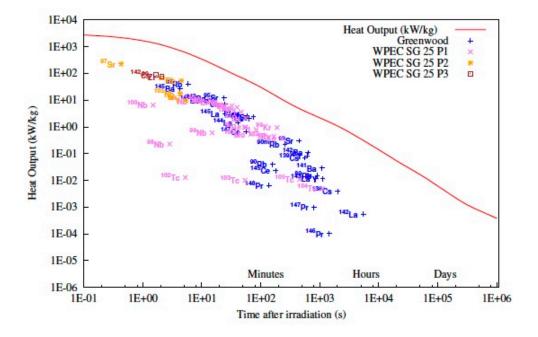


Fission yield GEFY Am241

- Comparison of measurements (points) and calculations (lines) of decay heat power (MeV/fission) for ²³⁵U thermal fission for different irradiation times Measurements are those by Friesenhahn et al. in 1979
- Comparison of ²⁴¹Pu irradiations against the burst function and Dickens experimental results

Fission pulse heat: fission events

1E+04


Total decay heat from ${}^{235}U_{th}$ pulse with radionuclide labels at = $(t_{1/2}, heat(EOI))$

1E+03 1E+02 1E+01 teat Output (kW/kg) 1E+00 1E-01 1E-02 1E-03 1E-04 1E-05 1E-06 1E-01 1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 Time after irradiation (s)

Heat Output (kW/kg) value/t-half for nuclide

Total decay heat from ${}^{235}U_{th}$ pulse with TAGS radionuclide labels at (x,y) = $t_{1/2}$,heat(EOI)

WPEC subgroup 25 nuclides are labelled as PX = priority X.

Fission product energy release experiments evaluated by the CoNDERC project

Author (first)	Institute	Year	Publication	Measured nuclide(s)
Gunst	Bettis Atomic Power Laboratory	1975	NSE 56 241	²³³ U, ²³⁵ U, ²³⁹ Pu, ²³² Th
Shure	Bettis Atomic Power Laboratory	1979	NSE 71 327	²³⁵ U, ²³⁹ Pu
Fiche	Atomic Energy Commission CEA	1976	NEACRP-L-212	²³⁹ Pu, ²³³ U
Lott	Atomic Energy Commission CEN	1973	Nucl. En. 27	²³⁵ U
Friesenhahn	IRT Corporation (EPRI)	1976	EPRI NP-180	²³⁵ U
Friesenhahn	IRT Corporation (EPRI)	1979	EPRI NP-998	²³⁵ U, ²³⁹ Pu
Schrock	UC Berkeley (EPRI)	1978	EPRI NP-616	²³⁵ U
Baumung	Karlsruhe	1981	KfK 3262	²³⁵ U
Yamell	Los Alamos National Laboratory	1978	LA-7452-MS	²³⁹ Pu, ²³³ U, ²³⁵ U
Yamell	Los Alamos National Laboratory	1977	LA-NUREG-6713	²³⁵ U
Dickens	Oak Ridge National Laboratory	1978	ORNL/NUREG-39	²³⁵ U
Dickens	Oak Ridge National Laboratory	1978	ORNL/NUREG-34	²³⁹ Pu
Dickens	Oak Ridge National Laboratory	1978	ORNL/NUREG-47	²⁴¹ Pu
Johansson	Uppsala University	1987	NEACRP-L-302	²³⁵ U, ²³⁹ Pu, ²³⁸ U
Johnston	UK Atomic Weapons Res. Est.	1965	Nucl. En. 19	²³⁹ Pu
Schier	University of Massachusetts Lowell	1993	DOE/ER/40723-1	²³⁵ U, ²³⁹ Pu, ²³⁸ U
Schier	University of Massachusetts Lowell	1993	DOE/ER/40723-2	²³⁵ U, ²³⁹ Pu, ²³⁸ U
Schier	University of Massachusetts Lowell	1994	DOE/ER/40723-3	²³⁵ U, ²³⁹ Pu, ²³⁸ U
Schier	University of Massachusetts Lowell	1996	DOE/ER/40723-4	²³⁵ U, ²³⁹ Pu, ²³⁸ U
Akiyama	University of Tokyo	1982	AESJ 24(9) (10)	²³⁵ U, ²³⁹ Pu, ²³³ U
Akiyama	University of Tokyo	1988	JAERI-M 88-252	²³² Th, ²³³ U, ²³⁵ U, ²³⁸ U, ²³⁹ Pu
Ohkawachi	Japan Nuclear Cycle Devel. Inst.	2001	ND 2001	²³⁵ U, ²³⁷ Np
Fisher	Los Alamos National Laboratory	1964	Phys Rev B, 1959	²³² Th, ²³³ U, ²³⁵ U, ²³⁸ U, ²³⁹ Pu
McNair	UK Atomic Weapons Res. Est.	1969	J Nucl En 23	²³⁵ U, ²³⁹ Pu
MacMahon	Scottish Research Centre	1970	J Nucl En 24	²³⁵ U
Jurney	Los Alamos National Laboratory	1979	LA-7620-MS	²³⁹ Pu, ²³³ U, ²³⁵ U
Murphy	UK Atomic Weapons Res. Est.	1979	AEEW-R 1212	²³⁵ U, ²³⁹ Pu
Scobie	Scottish Research Centre	1971	J Nucl En 25	²³⁵ U

Fission pulse heat: fission events

- All experimental data gathered, compiled and properly referenced
- FISPACT-II and ORIGEN code systems have been used to Verify the processes and Validate parts of the data
- The web site is still evolving

5. ICSBEP & RR : beyond K_{eff}

 A review of the ICSBEP and IRPhEP handbooks as well as other sources such as IAEA TRS No 480 (Research Reactor Benchmarking Database: Facility Specification and Experimental Data) has allowed to determine a variety of critical experiments with reaction rates, spectral index

 Thirteen identified so far, more to come, now available as MCNP6, TRIPOLI-4 input decks, outputs results simulated with ENDF-VIII.0 and TENDL-2019

On-going activity

Progress: spectral indices, reaction rates

 A partial list of ICSBEP and IRPhEP Benchmarks with Reaction Rate Data

More to

come!

	ICSBEP or IRPhEP Identifier	Comment	
	HEU-MET-FAST-001	Godiva. CAUTION: The ICSBEP Handbook description is for the original (spherical, or Godiva-I) assembly which ceased operation in 1954, but the experimental data are said to come from a 1959 measurement. The 1959 "Godiva" assembly, Godiva-II, was a cylindrical assembly with a dome top. Further research is needed to determine the applicable model for these data.	
	HEU-MET-FAST-028	Flattop-25. A spherical HEU core surrounded by a spherical ^{nat} U reflector. Most of the experimental reaction rate data come from measurements near the core center.	
	IEU-MET-FAST-007	Big-10. A large cylindrical assembly consisting of uranium metal plates of various enrichments. Measurements were made in the center of a large 10% enriched region.	
	Pu-MET-FAST-001	Jezebel. A bare spherical mostly ²³⁹ Pu (~5 atom % ²⁴⁰ Pu) core. Reaction rate measurements were made near the core center.	
	Pu-MET-FAST-002	"dirty" Jezebel. A bare spherical, mostly ²³⁹ Pu core (²⁴⁰ Pu content is ~ 20 atom %). Reaction rate measurements were made near the core center.	
	Pu-MET-FAST-006	Flattop-Pu. A spherical ²³⁹ Pu core surrounded by a spherical ^{nat} U reflector. Most of the experimental reaction rate data come from measurements near the core center.	
A	Pu-MET-FAST-008	THOR. A spherical mostly ²³⁹ Pu core (~5 atom % ²⁴⁰ Pu) surrounded by a cylindrical thorium reflector.	

Progress: spectral indices, reaction rates

Met-MCeNP6® 201307211 RIPOLI4® input decks have been General comments: - celt contents desities are calculated to 8 deciral digits. - celt contents desite desite desite deciral digits. - celt contents desite desite deciral digits. - celt contents deciral digits. - celt contents desite desite desite deciral digits. - celt contents deciral digits. - celt contents desite desite deciral digits. - celt contents deciral digits. - celt contents deciral digits. - celt contents desite deciral digits. - celt contents deciral digits. - celt contents deciral digits. - celt contents deciral digits. - celt conte

	EP roporte	
<pre>c * alabele to https://nutleardata.conlig.v.xt#/Prodiction/Lib8ix. c * - users may need to adjust these identifiers based upon the detail c * their local MCNP installation. c * - a variety of sample "kcode" input cards are provided.</pre>	* ICSBEP or IRPhEP	Comment
<pre>c * - users should adjust these input parameters to suit their local c * - reaction rate tallies are obtained in a spherical (r=0.25 cm) reg c * positioned at the <u>center</u> of the core. we make no attempt to expl c * model fission counters or foils. c * - users should adjust the tally region as necessary to suit their c * requirements. c * - tally definitions are provided for selected reaction cross section c * which C/E comparisons may be made. c * - several fine group flux tallies are also defined. these fluxes m c * combined offline with fine group cross sections to calculate addi c * spectral indices in lieu of running a new MCNP simulation. c * - users should modify or delete these tallies as appropriate fo c * local requirements. c ************************************</pre>	an * in * icitly * local * * f LEU-COMP-THERM-208 y be * tional * their * * *****	Mid-plane pin power distribution measurements were made in the central 15x15 region of a large (~4400 rods) Babcock & Wilcox reactor lattice. This evaluation includes 17 critical con- figurations with varying water hole and poison rod alignments. Twelve configurations included pin power measurements. These data are provided in Appendix B to the evaluation.
c c The ICSBEP PMF001 (rev4, simple) benchmark model eigenvalue is 1.0000 c c	DIMPLE-LWR-EXP-002 (LEU-COMP-THERM-055)	Mid-plane pin power distributions. Data are provided for two configurations, designated as S06A and S06B. Although a full 3D description of these configurations is provided in the ICSBEP Handbook, when analyzing pin power data the IRPhEP evaluator recommends using a 2D model employing octant symmetry.
11 so 0.25 \$central region tally radius c	U233-MET-FAST-001	Jezebel-23. A spherical, bare, ²³³ U critical assembly. Reaction rate measurements were made near the core center.
totnu rand ggn=2 hist=1 \$use defaults for other random # generator e c c nsrck = number of histories per cycle c nkk = rough estimate of expected eigenvalue c ikz = warmup cycles to skip c kgt = total number of cycles to run	U233-MET-FAST-006	Flattop-23. A spherical ²³³ U core surrounded by a spherical ^{nat} U reflector. Reaction rate measurements were made near the core center.
c <u>mrkp</u> = maximum number of cycles to include in MCTAL and RUNTPE files c <u>kcode</u> <u>nsrck rkk ikz kct msrk knrm mrkp</u> kc8 c <u>kcode</u> 2500000 1.0 50 40050 2j 40050 \$2,500,000 x 40,000 c <u>kcode</u> 2500200 1.0 50 10050 2j 40050 \$2,500,000 x 4,000 c <u>kcode</u> 2500200 1.0 50 4050 2j 40050 \$2,500,000 x 4,000	FUND-IPPE-FR-MULT- 100B historie 25B historie 10B histories 10B histories	Cross section ratio data for a variety of foils irradiated near the center mid-plane of IPPE's Pu metal BR-1 core.
c kcore 250000 0 50 2050 2j 40050 \$2,500,000 × 2,000 kcore 250000 10 50 450 2j 40050 \$2,500,000 × 400 c kcore 250000 100 50 450 2j 40050 \$50,000 × 400 c kcore 250000 100 500 2j 40050 \$50,000 × 5000 c kcore 2500 10 100 500 \$50,000 × 5000	= 5B histories = 1B histories = 250M histories = 50M histories	

Progress: spectral indices, reaction rates

- Converging reaction rates is much more demanding than traditional Keff's simulation:
 - 50M, 250M, histories for Keff @ 10 pcm
 - 1B and 5B histories needed for RR @ 2%
- Deeper review, scouting for gems is continuing
- OpenMC & SERPENT inputs in the pipeline

ICSBEP & RR : beyond K_{eff}

- Many experimental data gathered, compiled and properly referenced
- MCNP6® and TRIPOLI4® code systems have been used to Verify the processes and Validate ENDF/B-VIII.0 and TENDL-2019 application data forms
- The web site is still evolving

6. Gamma transport: Verification

- Photonuclear (# photoatomic) evaluation are more commonly available
- Pure gamma transport (# coupled neutrongamma) are more in demand
- Prior to its release near the end of 2019, a testing effort was undertaken for the next generation suite of <u>Talys Evaluated Nuclear</u> <u>Data Library photonuclear files g-TENDL-</u> 2019 s0 form (#s30 explicit)

Gamma transport: Verification

- This was not an effort to validate the physics accuracy of these files, rather to simply verify that the ACE files produced by NJOY from the underlying TENDL-2019 evaluations were structurally correct and that physically sounds MCNP6® jobs utilizing these files would run to completion
- A "mode e p n" MCNP6® input deck and ACE files generated at the Agency

Gamma transport: Verification

- "Création d'une bibliothèque d'activation photonucléaire et mesures de spectres d'émission de neutrons retardés" 2005 - M.L. Giacri-Mauborgne
 "Development and Implementation of
 - Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code"

2000 - Morgan C. White

Gamma transport: Verification

- Input files were suitably modified to test the ACE photonuclear nuclear data files for all stable elements/isotopes from Z=3 through Z=83 as well as ²³²Th and ^{234,235,238}U
- Values on the "cut:p" and "cut:e" were varied by element as appropriate, or set to minimum of 100 keV.
- The "nps" card value was set to 250 million or 50 million histories.

Inputs for 82 elements, # cut values and nps

C

```
Example photonuclear simulation: find the n spectrum from a disc
С
c Zr
   1
       11
            -6.49
                     -11 21 -22
   2
                     (11:-21:22)-91
        0
    9
        0
                                      91
                 5.0
  11
        cz
   21
                 0.0
        pz
   22
                 2.5
        pz
   91
        50
              150.0
mode e p n
sdef pos=0 0 0 sur=21 vec=0 0 1 dir=1 par=3 erg=20
С
С
   m11 plib=14p elib=01e nlib=00c pnlib=19u
       40090 0.5145
      40091 0.1122
      40092 0.1715
      40094 0.1738
      40096 0.0280
mpn11
       40090
      40091
      40092
      40094
      40096
C
fcl:p 100
 phys:p 3j 1
          2.957
 cut:p j
 cut:e j
           2.957
 wwp:e,p,n 5 3 5 0 0
wwe:e,p,n 20
wwn1:e,p 0.2
                  0.2
                          -1
           0.0001 0.0001 -1
 wwn1:n
C
 e15
         0.01 0.05 0.1 0.4 0.6 0.8 1
         1.25 1.5 1.75 2 2.5 3 3.5 4 5 6 7 8 9 10 12.3858
 f15:n
        0.0 100.0 1.25 0.0
с
 e22
         0.01 0.05 0.1 0.4 0.6 0.8 1
         1.25 1.5 1.75 2 2.5 3 3.5 4 5 6 7 8 9 10 12.3858
 f22:n 11 21 22 (11 21 22)
С
 nps 250000000
c nps 2500000
C
 print
```

Example photonuclear simulation: find the n spectrum from a disc

c U c U 1 11 -18.95 -11 21 -22 2 0 (11 :-21: 22) -91 9 0 91
11 cz 5.0 21 pz 0.0 22 pz 2.5 91 so 150.0
mode e p n <u>sdef</u> pos=0 0 0 sur=21 <u>vec</u> =0 0 1 dir=1 par=3 erg=20 c c
m11 plib=14p elib=01e nlib=00c pnlib=19u 92234 0.000055 92235 0.007200 92238 0.992745 mpn11
92234 92235 92238 c fcl:p 1 0 0
cutter j 0.1 \$replace zero threshold with 100 keV cutter j 0.1 \$replace zero threshold with 500 keV cutter j 0.5 \$replace zero threshold with 500 keV
WWD:e,p.n 5 3 5 0 0 WWe:e,p.n 20 WWn1:e,p 0.2 0.2 -1 WWn1:n 0.0001 0.0001 -1 C
e15 0.01 0.05 0.1 0.4 0.6 0.8 1 1.25 1.5 1.75 2 2.5 3 3.5 4 5 6 7 8 9 10 12.385 f15:n 0.0 100.0 1.25 0.0
e22 0.01 0.05 0.1 0.4 0.6 0.8 1 1.25 1.5 1.75 2 2.5 3 3.5 4 5 6 7 8 9 10 12.385 f22:n 11 21 22 (11 21 22)
c nps 50000000 c nps 2500000 c
print

7. Transport – shielding

 Upon specific request of members state, radiation shielding benchmark are now also considered in CoNDERC

- Building from the existant: IAEA consultancy achievements, generous contributors and moving forward
- MCNP6® and TRIPOLI-4® input decks have been developed for:

Shielding; e.g. Oktavian

Download all data 🚣

or

Access individual data sets

눧 oktavian_exp

oktavian_Co_tal21.exp oktavian_Cr_tal41.exp oktavian_W_tal41.exp oktavian_Pb_tal41.exp oktavian_LiF_tal21.exp oktavian_Mn_tal21.exp oktavian_LiF_tal41.exp oktavian_Si_tal21.exp oktavian Si tal41.exp 🖹 oktavian Co tal41.exp oktavian Cu tal41.exp oktavian_Mn_tal41.exp oktavian_Al_tal41.exp oktavian_Mo_tal21.exp oktavian_Ti_tal21.exp oktavian_Cr_tal21.exp oktavian_Zr_tal21.exp oktavian_Cu_tal21.exp oktavian_Mo_tal41.exp oktavian_Al_tal21.exp oktavian_W_tal21.exp oktavian_Ti_tal41.exp

🖿 MCNP

Transport – shielding – SINBAD

- Expert crafted, verified input decks are openly available, retriveable
- Validation outputs results available for
 - JEFF-3.3
 - ENDF/B-VIII.0
 - JENDL-4.0
 - TENDL-2019
- Relevant documentations

Conclusions: a way forward

- Live web portal, explicit with graphics, tables
- Deployable data streams, full download
- V&V codes inputs & outputs
- Experimental information in computer forms
- Computer accessible through github

